3.662 \(\int \frac{1}{(d+e x^2)^{3/2} (a+b \sinh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=24 \[ \text{Unintegrable}\left (\frac{1}{\left (d+e x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2},x\right ) \]

[Out]

Unintegrable[1/((d + e*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2), x]

________________________________________________________________________________________

Rubi [A]  time = 0.0514789, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{1}{\left (d+e x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[1/((d + e*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2),x]

[Out]

Defer[Int][1/((d + e*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2), x]

Rubi steps

\begin{align*} \int \frac{1}{\left (d+e x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx &=\int \frac{1}{\left (d+e x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx\\ \end{align*}

Mathematica [A]  time = 16.3942, size = 0, normalized size = 0. \[ \int \frac{1}{\left (d+e x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[1/((d + e*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2),x]

[Out]

Integrate[1/((d + e*x^2)^(3/2)*(a + b*ArcSinh[c*x])^2), x]

________________________________________________________________________________________

Maple [A]  time = 0.152, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{ \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) ^{2}} \left ( e{x}^{2}+d \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x^2+d)^(3/2)/(a+b*arcsinh(c*x))^2,x)

[Out]

int(1/(e*x^2+d)^(3/2)/(a+b*arcsinh(c*x))^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)^(3/2)/(a+b*arcsinh(c*x))^2,x, algorithm="maxima")

[Out]

-(c^3*x^3 + c*x + (c^2*x^2 + 1)^(3/2))/((a*b*c^2*e*x^3 + a*b*c^2*d*x)*sqrt(c^2*x^2 + 1)*sqrt(e*x^2 + d) + ((b^
2*c^2*e*x^3 + b^2*c^2*d*x)*sqrt(c^2*x^2 + 1)*sqrt(e*x^2 + d) + (b^2*c^3*e*x^4 + (c^3*d + c*e)*b^2*x^2 + b^2*c*
d)*sqrt(e*x^2 + d))*log(c*x + sqrt(c^2*x^2 + 1)) + (a*b*c^3*e*x^4 + (c^3*d + c*e)*a*b*x^2 + a*b*c*d)*sqrt(e*x^
2 + d)) - integrate((2*c^5*e*x^6 - (c^5*d - 4*c^3*e)*x^4 - 2*(c^3*d - c*e)*x^2 + (2*c^3*e*x^4 - (c^3*d - 4*c*e
)*x^2 + c*d)*(c^2*x^2 + 1) - c*d + (4*c^4*e*x^5 - 2*(c^4*d - 4*c^2*e)*x^3 - (c^2*d - 3*e)*x)*sqrt(c^2*x^2 + 1)
)/((a*b*c^3*e^2*x^6 + 2*a*b*c^3*d*e*x^4 + a*b*c^3*d^2*x^2)*(c^2*x^2 + 1)*sqrt(e*x^2 + d) + 2*(a*b*c^4*e^2*x^7
+ (2*c^4*d*e + c^2*e^2)*a*b*x^5 + a*b*c^2*d^2*x + (c^4*d^2 + 2*c^2*d*e)*a*b*x^3)*sqrt(c^2*x^2 + 1)*sqrt(e*x^2
+ d) + ((b^2*c^3*e^2*x^6 + 2*b^2*c^3*d*e*x^4 + b^2*c^3*d^2*x^2)*(c^2*x^2 + 1)*sqrt(e*x^2 + d) + 2*(b^2*c^4*e^2
*x^7 + (2*c^4*d*e + c^2*e^2)*b^2*x^5 + b^2*c^2*d^2*x + (c^4*d^2 + 2*c^2*d*e)*b^2*x^3)*sqrt(c^2*x^2 + 1)*sqrt(e
*x^2 + d) + (b^2*c^5*e^2*x^8 + 2*(c^5*d*e + c^3*e^2)*b^2*x^6 + (c^5*d^2 + 4*c^3*d*e + c*e^2)*b^2*x^4 + b^2*c*d
^2 + 2*(c^3*d^2 + c*d*e)*b^2*x^2)*sqrt(e*x^2 + d))*log(c*x + sqrt(c^2*x^2 + 1)) + (a*b*c^5*e^2*x^8 + 2*(c^5*d*
e + c^3*e^2)*a*b*x^6 + (c^5*d^2 + 4*c^3*d*e + c*e^2)*a*b*x^4 + a*b*c*d^2 + 2*(c^3*d^2 + c*d*e)*a*b*x^2)*sqrt(e
*x^2 + d)), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x^{2} + d}}{a^{2} e^{2} x^{4} + 2 \, a^{2} d e x^{2} + a^{2} d^{2} +{\left (b^{2} e^{2} x^{4} + 2 \, b^{2} d e x^{2} + b^{2} d^{2}\right )} \operatorname{arsinh}\left (c x\right )^{2} + 2 \,{\left (a b e^{2} x^{4} + 2 \, a b d e x^{2} + a b d^{2}\right )} \operatorname{arsinh}\left (c x\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)^(3/2)/(a+b*arcsinh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(e*x^2 + d)/(a^2*e^2*x^4 + 2*a^2*d*e*x^2 + a^2*d^2 + (b^2*e^2*x^4 + 2*b^2*d*e*x^2 + b^2*d^2)*arcs
inh(c*x)^2 + 2*(a*b*e^2*x^4 + 2*a*b*d*e*x^2 + a*b*d^2)*arcsinh(c*x)), x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \operatorname{asinh}{\left (c x \right )}\right )^{2} \left (d + e x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x**2+d)**(3/2)/(a+b*asinh(c*x))**2,x)

[Out]

Integral(1/((a + b*asinh(c*x))**2*(d + e*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (e x^{2} + d\right )}^{\frac{3}{2}}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x^2+d)^(3/2)/(a+b*arcsinh(c*x))^2,x, algorithm="giac")

[Out]

integrate(1/((e*x^2 + d)^(3/2)*(b*arcsinh(c*x) + a)^2), x)